skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muthirayan D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of online learning in two-sided non-stationary matching markets, where the objective is to converge to a stable match. In particular, we consider the setting where one side of the market, the arms, has fixed known set of preferences over the other side, the players. While this problem has been studied when the players have fixed but unknown preferences, in this work we study the problem of how to learn when the preferences of the players are time varying and unknown. Our contribution is a methodology that can handle any type of preference structure and variation scenario. We show that, with the proposed algorithm, each player receives a uniform sub-linear regret of {O˜(𝐿1/2𝑇𝑇1/2)} up to the number of changes in the underlying preferences of the agents, 𝐿𝑇. Therefore, we show that the optimal rates for single-agent learning can be achieved in spite of the competition up to a difference of a constant factor. We also discuss extensions of this algorithm to the case where the number of changes need not be known a priori. 
    more » « less